About CRANIA
CRANIA brings together research, clinical and academic expertise across multiple disciplines, in an environment with broad access to patients in a World-class Center for Research, Development, Application and Commercialization of Neuromodulation Technologies and Interventions in Toronto.
Fully integrated and first-to-clinic for neuromodulation therapies that can positively impact patients in the next 5 years.
OUR MISSION
To accelerate the translation of neuromodulation research to patient solutions that improve brain health and function.
OUR VISION
The potential of every individual’s brain is unlocked for better quality of life.
The Burden of Brain Disorders

CANADA
Neurological and mental illness disorders directly affect over 10 million Canadians
- 4 million living with a neurological condition/injury
- 7 million experience mental illness or addiction in any given year

THE WORLD
Globally Brain Disorders account for 25% of disease burden
Greater than Heart Disease at 10% and Cancer at 9%
- 10% Neurological Disorders
- 6.5% Mental Health & Addiction
- 5% Stroke
- 3.5% Back & Neck Pain
WHAT IS NEUROMODULATION?
NEUROMODULATION changes brain, spinal cord or nerve function using advanced device(s) that interface with specific areas of the central or peripheral nervous system to reduce symptoms and address underlying disorder(s).
Established Neuromodulation Therapies



Expanding Technologies & Applications
- Functional Electrical Stimulation (FES)
- Respiratory Electrical Stimulation (RES)
- Transcranial Magnetic Stimulation (TMS)
- Transcutaneous Electrical Nerve Stimulation (TENS)
- Deep Brain Stimulation (DBS)
- Gastric Electrical Stimulation (GES)
- Spinal Cord Stimulation (SCS)
- Sacral Nerve Stimulation (SNS)
- Vagus Nerve Stimulation (VNS)
OPERATION TEAM
TEAM MEMBERS
View the CRANIA team
CORES

Devices R&D – Electrodes & Coatings
Leads
A. Guenther (Mechanical and Industry Engineering, University of Toronto)
P. Santerre (Faculty of Dentistry)
Location
University of Toronto, Mechanical and Industrial Engineering, Faculty of Dentistry
Activities
Manufacture electrodes that are fully customizable, biocompatible, collagen-based, with the option of being biodegradable and that minimize magnetic resonance imaging (MRI) artifacts; thus, overcoming limitations of existing electrodes and extending their useful life.
Equipment
Clean room tools for collagen electrode manufacturing and testing: Electrode surface coating development and testing (Laser Cutter, Maskless writer, High vacuum evaporator) and Collagen electrode development and testing equipment

Devices R&D – Electronics
Leads
R. Genov (Electrical and Computer Engineering Department, University of Toronto)
Location
University of Toronto, Electrical and Computer Engineering Department
Activities
Develop a next generation implantable device that integrates electrodes from Core A with a wireless monitoring and communication system. Brain activity signals and other inputs will be processed and used, in real time, by the device to stimulate the brain (eg, deliver neuromodulation therapy) in a responsive manner via accurately implanted electrodes.
Equipment
Digital components and tools for building circuits and sensors: Wireless Sensor and Stimulator Development, Custom Designed Integrated Circuits, Digital Components, Printed Circuit Board Router, Implantable Sensor Development, Characterization and Validation, Development of Miniaturised Optical Sensors for Diagnostics.

Neuromodulation Suite
Activities
Develop, in collaboration with industry, advanced imaging, electrophysiological measurement and surgical navigation technologies to identify and target specific brain regions associated with disease in grey/white matter with unparalleled accuracy and precision.
Equipment
Low field strength (0.5T) MRI, robotic placement of electrodes, novel registration technologies, surgical\physiological targeting and navigation systems.

Technology Validation – Animal Models
Leads
L. Zhang (Krembil Research Institute)
J. Zariffa (Toronto Rehabilitation Institute)
Location
Toronto Western Hospital – University Health Network
Activities
Validate technologies from Cores A, B, and C in appropriate animal models. Technologies to be tested include: the wireless communication systems, implantable stimulators, implantable electrodes, connectors, sensors, closed-loop control strategies, coatings and other components of the implantable neuromodulation systems.
Equipment
Animal electrophysiological measurement and stereotaxic surgical systems.

Application – Closed-loop Capabilities
Leads
R. Wennberg (Neurology)
A. Fasano (Neurology)
C. Marquez Chin (Toronto Rehabilitation Institute)
Location
Toronto Western Hospital, Toronto Western Hospital Movement Disorders Lab, Toronto Rehabilitation Institute REL (Lyndhurst)
Activities
Clinical testing of closed loop algorithms, chips, and stimulation protocols with real time physiological/behavioral/cognitive assessments in healthy individuals and those with neurological conditions (Epilepsy, Parkinsons’s etc). Test bed for the development of closed-loop neuromodulation strategies.
Equipment
Research EMU amplifier system, Real-time gait analysis, EEG assessment systems, Neurological assessment system, Electrical stimulator, Optical kinematic, CRANIA lab renovations.

High Performance Computing (HPC)
Leads
C. Virtanen (University Health Network)
N. Koudas (University of Toronto)
A. Sheikholeslami (Electrical and Computer Engineering Department, University of Toronto)
S. Hill (Krembil Research Institute)
Location
University Health Network
Activities
Robust HPC infrastructure is required to collect, standardize and perform data analytics.
Additionally, the UHN HPC4Health team will work with CRANIA to facilitate the necessary network interconnects to transfer pre-processed data gathered from sensor streams and other sources to HPC4Health.
Application of Fujitsu’s Digital Annealer to neuromodulation.
Equipment
Computers and software.
COLLABORATIONS
Host Institutions & Main Partners


University Health Network & University of Toronto
- Toronto Rehabilitation Institute, University Health Network
- Krembil Research Institute, University Health Network
- Faculty of Applied Science and Engineering, University of Toronto
- Faculty of Medicine, University of Toronto
- Faculty of Dentistry, University of Toronto
- Faculty of Arts and Science, University of Toronto
POWERED BY
- Canada Foundation For Innovation

- MRIS: Ministry of Research, Innovation and Science

- The Walter and Maria Schroeder Foundation
Other Sponsors
- R. Howard Webster Foundation
- Donald M. Ross
- The William & Nona Heaslip Foundation
- The Henry White Kinnear Foundation
- Anonymous